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The optimal transport In
statistical physics



Motivation from statistical physics (1/2)

» N identical (classical) particles with positions x, ..., Xy in R4

» Particles xy, ..., xy are distributed along P(x,, ..., xy) € @Sym((Rd)N)

 Two-body interaction potential w(|x — y|)

Interaction energy of a configuration (X, ..., Xy) :  C(X, ..., Xy) := Z w(|x; — X )
1<i<j<N

* One-body external potential V. : RY - R (e.g. confining potential)

Temperature

N ——

Ground-state/free energy: F(V,):= inf J (c(xl,...,xN) ZVGX(xi))dIP T - Ent(P)
(T=0) (T>0) PELym(®DY) | Jmav -

\_\f—J

Full interact® = interact® + external pot®



Motivation from statistical physics (2/2)

Computing this quantity is hard (e.g. many local minima N > 1) !

Density Functional Theory

Split infimum into two infima

, , , where pp is of [P :
Fji,T)(VeX) = inf {...} = 1f inf {...}

PEPym(RDN) pEPRY)  pp=p pPp(x) = J P(x, dx,, ..., dxy)
RAN-1)

Ground-state/free energy = Legendre transform of OT

Fji,T)(VeX) = Inf {OTji,T)(p) + J' Vexp} where OTji,T)(p) = 1nf { J C(Xq, .., X\)dP + T - Ent(lP)}
d —
PEP(RY) RAN Pp=p RAN

\——\/———J
& & Linear dependence in ext® pot®

But, solving OT is complicated & ? — Use approximations of OTji,T)(p) !



What is my problem ?



What is my problem ?

OT\(p) := inf { J c(xy, ..., Xy)dP + T - Ent(lP)}
. | want to solve numerically OTji,T)(p) for N > 1 pp=p | JRav

« More precisely, for small 0 < 7' < 1 in order to approximate the unregularized OT, that is OTji,O)(p)

* | am going to use the

0T\ (p) = i {F v (V) +N JW Vp } &) Strictly and smooth concave max° problem !

— NT)
=DI(V)

Contributions

» | am going to do a Gradient Ascent [ &% Sinkhorn algorithm1: V.. < V., + 4 VDji,T)(Vt)
* | am going to introduce a (natural & physically relevant) way to discretize this CY problem.

* ...which is also amenable to get quantitative error estimates.



Multimarginal optimal transport



What is Optimal Transport ? I1(x,

)
V
| N J H
Given two probability measures u, v € P(R?) \ i
how to transport y onto v while minimizing a X 7y

cost of transportation c(x,y)?
(x, ) T1(x, y)

A transport plan P € 11(u, v) from u to v is a measure on RY x R such that the first marginal
(resp. second marginal) of [P is u (resp. v)

« P(x,y) is the amount of mass of u at position x sent to position y»

& Under weak assumptions, there exists a minimiser [P*
Moving an infinitesimal amount of

mass from x to y costs c(x, y), the Is the transport induced by a Monge transport ? \— )

optimal transport reads T - R4 - R4 P*(x,y) = u(x) ® 6(y — T(x))

inf J c(x, v)dP(x, y) « [he mass is not split : all the mass of u at x
PElY) | IRixrd is sent to a single location (i.e. y) »



What is Kantorovich duality (and why caring) ?

Kantorovich duality

where ¢,y : R4 — R are such that
inf , V)dP(x, =3 du + d
peliu J gy NARY) = s J L J vy BO) + () < o)

Optimality conditions
¢, y are optimal (Kantorovich potentials) if and only if  ¢(x) + w(y) = c(x, y) P*—a.e.(x,y)

« Points (x,y) on the support of P* achieve the minimum of c(x,y) — ¢(x) — w(y) »

Existence and uniqgueness of Monge map

This entails that on the support of P*: V. ¢(x) =V c(x,y) and V y(y) =V c(x,y)
Theorem — If y = V _c(x,y) is invertible, then P* is the graph of T(x) = V,c(x, - )~ (V(x))

Bample — ¢(x,y) = —x =y > VoW = Vieny) = V@) =x—y = y=x— V()

=T(x)



What is multimarginal optimal transport ?

N marginals py, ..., Uy € P(RY

Cost of transportation c(x, ..., xy)

Open question Under which assumptions
there exists 15, ..., Ty : R4 — R4 such that

N
P(xy, ..o xy) = iy () @ 8(x; — Ti(x))
=2

Almost completely open !

Duality N

SUp Z J Viui
Rd

Vl""’VN l=1

where Vi, ..., Vy : R? - R are such that
Vix) + ... + V) < c(xq, .., Xy)

Multimarginal OT

inf J c(xy, ..., xp)dP
PE(uy,- - pn) J (Rayw

Optimality conditions

Vi, ..., Vyare optimal if and only if

Vi) + ...+ Vlxy) = c(xq, ..., xy) P*—a.e.

— V. Vi(x) = V,clxy, ., %, .5 xy)

For repulsive Coulomb-like costs
w(lx=y|)=|x—y| itis
believed to be generically true.

Conjecture holds for more than two
decades...

— Wikipedia [Strictly-correlated electrons]



https://en.wikipedia.org/wiki/Strictly-Correlated-Electrons_density_functional_theory#cite_note-Seidl2007-3

Physical interpretation of Kantorovich duality (7" = 0)

* This can be rewritten as an unconstrained problem:

N Given any V : RY > R, up to the addition of the
MOT = sup Z I Vi, constant V «— V + E,(V)/N, the function is
Rd

Vi s Vv U i=1 admissible, where
N
where Vi, ..., Vi : RY = R are such that E\(V) = 1Inf {C(Xp cees Xpy) T 2 V(xl-)}
Vix) + ... + Vylxy) < clxq, ..., Xy) o i=1

« Remark that Ex(V) = F ]i,o)(V) = ground-state energy

* |n our case, all marginals are the
same p = {; = ... = Uy and one OT(p) = sup {EN(V) +NJ' Vp}
canchoose V=V, =... =V VRER Re
N
Viis optimal if and only if  c(xy, ..., xy) — 2 Vix,) = Ex(V) P*—a.e.(x;,...,xy)
=1

« The optimal V is interpreted physically as (minus) the external potential which
forces the patrticles to live at equilibrium inside the support of [P* »



Physical interpretation of Kantorovich duality (7" > 0)

 Duality at positive temperature T > 0 is the same o -
but one replaces the ground-state energy by the ~ 0Ty ()= sup  F"(V)+N J Vp
free energy V:IR>R Rd

Gibbs variational principle : ~ FO(V)=—T 10gJ e AGUIRREED VoD dx, ...dxy

(REN
. . SF{”
« Smooth (strictly concave) functional and 51‘V/ (V)
IS given by (minus) the marginal of Gibbs measure SF
VZ is optimal if and only if (VX)) =p
1 . 5V
Prn(Vo) o exp| - 7(6(’% o Xy) 2 Volx)| « The optimal V' is interpreted
=1 physically as (minus) the external
« Canonical ensemble » — distribution of interacting potential which forces the canonical
particles with ext® pot® — V/, in thermal equilibrium at ensemble to have marginal p»

temperature T > ()



A strategy to solve the optimal
transport



Let’s recall my problem

OT\(p) := inf J c(xy, ..., Xp)dP + T - Ent(P)
. | want to solve numerically OTji,T)(p) for N > 1 pp=p | JRav

« More precisely, for small 0 < 7' < 1 in order to approximate the unregularized OT, that is OT]%O)(p)

* | am going to use the

0T\ (p) = VO%‘;E . {F v (V) +N Jw Vp } > Strictly and smooth concave max® problem !

. (T)
=D(V)

» | am going to do a Gradient Ascent [ &% Sinkhorn algorithm1: V.. < V., + 4 Vng,T)(Vt)
« According to what precedes, we have VngfT)(Vt) = Np — NpT(Vt) where p(T)(Vt) is the

marginal of the canonical ensemble with potential V,

e ... It remains to find a way to discretize this CY problem !



A simple idea

1. Reduced-order search-space V € Span({¢;},_; ) for some finite basis {¢;};_;

2. Solve with a gradient ascent the problem

sup F]<VT>(V)—NJ Vp ¢ (%)

M
<= Optimise over the weights @y, ..., wy,;s.t. V = Z @, veSpan({¢;}._; ) Rd
~ ees

Derivative objective wrtto w,;: N qul-p(T)(V) — NJ¢” P Computed offline

(*) = dual formulation of (MCOT)
[Alfonsi, Coyaud, Ehrlacher & Lombardi ’'21]

N
Pp = p V.S. J'Z¢i(xj)dP=NJ¢ip Vi=1,...,.M.
j=1

« Marginal constraint is relaxed into moment constraints »



Some simple quantitative bounds

@ Working with the dual of MCOT allows to derive simple quantitative bounds

Assume supp(u;) C Sforalli =1,...,N. Denote & = (Sl-)?il a partition of S

Theorem [L’] — If the cost of transportation c¢(xy, ..., Xy) is a—H®élder, and if the moment functions

are taken to be piecewise constant functions on the partition &, then the error between the MCOT
and the true optimal transport is bounded by NCec“” where N is the number of marginal, where
C = max ||V*|| .« (where V* and the optimal Kantorovich potential) and ¢ = max diam($))

i=1 i=1,..M
This gives a rough bound of @(M_“/d) where M is the number of moment functions

If one can proves regularity on the Kantorovich potentials, then faster convergence rates :

Theorem [L’] — If the optimal Kantorovich potential V;k. .. V;\‘j are C**1 then considering the

moment functions are piecewise polynomials of order up to k on the partition &, the error
between the MCOT and the true optimal transport is bounded by N Ce*



The case of Coulomb(-like) costs



How to choose the ¢:s in the case of the Coulomb cost (1/2)

From now on, we consider Coulomb interaction w( |x — y|) = ‘ ‘ in dimension d = 3
X—=Y

(formally from [Cotar, Friesecke & Pass ’'147])

If py = p is fixed for some p € P(RY)

Kantorovich potential at T = () { V](\?)
N

: p*\xr1=—Jp<y>\x—yrldy

Takeaway message Vji,o) = —Np % |x ! + correctionterms as N — oo



How to choose the ¢.s in the case of the Coulomb cost (2/2)

1.00

Theorem (L '24) — For all T > 0, there exists a positive measure p}e)

such that the (entropic) Kantorovich potential Vi rewrites as the 075}
electrostatic potential generated by the charge density p}e) :

Vi(x) = = pi % | x| = - [p(e)(y) [x—y| ™ dy \J ¥/

|
|
|
|
|
|
|
|
|
|
0.50 - l
|
|
|
|
|
|
|
|
|
|
|

We call p}e) the external dual charge. Moreover, p}e)(l]%d) =N-1. o 00| IS e
—1.0 —0.5 0.0 0.5 1.0
Interpretation — « The charge density p}e) attracts the electrons into the optimal transport plan P* »

) for finite basis of measures {1;},_;
1

=1,.

Reduced-order search-space p}e) € Span({u,}
Otherwise stated, potential search-space is V € Span({¢;},_; ) where ¢; .= u; x | x|

(e)
P N
Vague claim (L’ 24 for d = 1) — If p), = p is fixed for some p € P(RY), then 0 Yoog I,

N narrow




Numerics for uniform droplets

Uniform droplets
NeN, py=N'p withBy=B0r) CR’ st |By|=N
Ball By, discretized into M concentric shells S,
By=UY 'S. whereS;=B(r)\B(r,_)), 0=ry<r <-<ry=ry
U, is indicator of $.’s
Viw, ..., o) = f wp; * |x|™' where u; = y¢
i=1

Initialized on mean-field limit, i.e. @) = 1fori = 1,..., M.

10.0 F

75 F

0.0 -

25 F
I
bl [
|

Example of ¢, = u; % | x|



N =2 with M € {10,20} and T = {50~',500~"} T
= Lower ooung 1o COS

Optimized V(w¥, ..., ®*) is then plugged as a trial state in the unregularized OT dual :
M

Dy(V)= inf < ex),....xy) - D Vx) ¢+ NJ Vp
X1, XNyER i1 R3
0.8} B A
0.7F
=
Q0.6
0.5 L
| “|=—True p° (€= 0)
0.4 —OT cost (exact) i —OT cost (exact) Initial weights

5 10 15 20 25 30 0 Ty
Iterations ||

5 10 15 20
Iterations




N=20 withM=20and T = 150!

Compared with upper bounds on OT of [Rédsanen, Gori—Giorgi & Seidl "16]

N FSCE[V] In [34]
116.0 F 3 2.300 2.327
4 4.922 4.935
115.5 F 5 8.519 8.620
10 43.022 43.140
115.0F
- 14 90.454 90.808
114.5 F == Value of Dy(V';) | 20 195.607 196.198
=T cost (near-exact) ' '
. . . | 0.0 30 462.423 463.807
5) 10 15 20 0 10 _—

Iterations x|

@ Of the order of 1 minute ! @ Erroroforder < — NXT XInT



Conclusion

How the (multimarginal) optimal transport arises in statistical physics
A general strategy to solve numerically the MOT (= dual of MCOT) (with quantitative estimates)

Efficient discretization of Kantorovich potentials for Coulomb(-like) cost

Lots of room for optimisation/algorithmic improvement — MCMC methods etc.

In which sense V, ~ — Np % | x \_1 ? Can we give 17!/2" order correction ?

Reference : [1.” 24, An external dual charge approach for the OT with
Coulomb cost, ESAIM COCV]




