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What are Riesz gases (d > 1) ?



What are formally Riesz gases ?

Infinite # of point-like particles x; in R4

The particles X; interact through the

x| s> 0
V(x) =4 —In|x] s =0
— x| —-2<s5<0
Sign is chosen to make V. . particles want to get far away from one another

Energy of j,-th particle in configuration {x; 1 j € N} Z Vi(x; — x; )
J#]o
s > d : summable series for typical configurations

s < d : divergent series and is needed

We will also consider T >0



Why do we care about Riesz gases ?

Riesz gases embodies several specific and important cases
s = 1 is the Coulomb potential in dimension 3

s = d — 2 is the « Coulomb » potential in dimension d > 1, i.e. solution to — ARV, = 9,

s = d — 1 is the « Coulomb » potential in dimension d + 1 restricted to hyperplans —Apa1V, = 5|Rdx{()}

s = 0 indimensiond € {1,2} are very important models which are believed to be sort of « universal »

Examples — Gaussian ensemble in RMT, Ginzburg-Landau vortices, zeros of { function ...

s = 3 indimensions d € {1,2,3} is dipole-dipole interaction



The short-range case s > d



Definition of the Riesz gases fors > d (1T = ()

The statistical physics way (thermodynamic limit)

Q° — How to define such an infinite system ?

Fix a domain Q C R? and place N particles inside Q:  E(Q,N) := min Z Vi(x; — x)

X1 - XN EL

Q / R%and N — oo and keep average density fixed |Q|/N :=p > 0

. E(Q,N)  |Q]
e(s,p) .= lm with =P
Q /R4 N—>oo ‘ Q) ‘ N
Remark — By homogeneity, it holds that Theorem — The limit exists for s > d, for
E(Q,N) = A1E(AL2, N). Choosing A = pld Q=N"p for |w| =1 and |dw| T %
+S

rewrites by scaling as e(s, p) = e(s)p

one may assume p = 1.
and 1S independent of the shape of @



Definition of the Rieszgasesfors > d (T > ()

The statistical physics way (thermodynamic limit)

Energy at temperature T > 0: F(Q,N,T) := min J Z Vi(x; — x;) dP + T Ent(P)
ON

PcQN
1<i<j<N

1
Gibbs variational principle : P ont=2Z(Q N, T)~" exp 7 Z Vi(x; — x;)

__— I<i<j<N

Partition funct | 1 Z V(x. — x.)
Aarttion tuncton cX X X:
. p T s\ T A

1<i<j<N

. F(Q,N,T) Q]
Free energy per unit volume : f(s,p) := lim with =

Q,/RY N—oo | 2| N P

Theorem — The limit exists for s > d for any sequence of domains €2 = N Vd gy where lw| =1 and
| 0w | = 0. By scaling, we have that the limit rewrites as (s, T, p) = f(s, T)p 4 and that it is independent
of the Sf?&,@@ of . [Ruelle, Statistical Mechanics . Rigorous results, '99]



Idea of proof s > d
Prove subadditivity of the energy E,(Q, U Q,, N, + N,) < E(Q,, N,) + E(Q,, N,)
For hypercubes :
Take a big hypercube C; = Lw for w = |— 1,114
Tile C; into L9/£? smaller hypercubes C, with small corridors of size ¢ < ¢ < L

In each small cubes, place £ particles so as to minimize energy in C, I

This gives a trial-state for the big cube and thus an upper bound

Ld
E(C;, L% < ﬁE(C,f, %) + Interaction between small cubes 1

L(LZ\€) 1

By integrability of V in the short-range case s > d, one can choose €
big enough to ensure that the interactions are small enough, so that

. ES(CLa Ld) . . ES(Cfa fd)
lim sup I < 11;11 inf 2

L—>0

For general domains £2: Tile the domain with hypercubes etc...



Infinite equilibrium configuration (7" = 0)

So far, we only looked at the in the thermodynamic limit. What about the points ?
The problem is that the energy of an infinite configuration {xj . 7 € N} is obviously infinite

- s XN+1 |
Definition — An C j

X
{xj : 1 € N} is a configuration which minimizes N
locally the energy in the sense that for any bounaded
D c R4 if we let Xy, ..., Xy D€ the particles inside @
of D, then @ D

N 00
Xy ves Xy = argy minED Z Vi —y) + Z Z V(i — X))
b lN 1<i<j<N i=1 j=N+1 O ® ®
A at [ = 0 Is then defined as a
point process on R4 which concentrates over
such equilibrium configurations. Idea of proof — The minimizers of E (€2, N) do not
cluster or leave big holes (i.e. number of points is

Theorem — In the short-range case s > d. such a locally bounded above and below). Take the

point process exists thermodynamic limit and use compactness.



Infinite equilibrium configuration (7" > 0)

In the positive temperature case T > 0, a similar definition holds

Definition — A at temperature T > 0 Is a point process on R4 such that for any
bounded D C R the conditional law P 5. 7. p Of the point process given that the number of points in D is

N and the positions {x;} ;2,1 Of the particles outside of D verifies

. N 00
P, 7 p = arg min [ Z Vi — ) + 2 Z V(y; — xk)] dP + T Ent(P)

PcDV
YDV \ 1<i<j<N i=1 k=N+1

This is called the (canonical) (DLR) equations.

Remark — According to

1 N 00
Py, 7,001 -0 Yv) = Z(s, T,D)~" exp _?[ 2 V(i = y) + Z Z Vs(yi_xk)]

1<i<j<N i=1 k=N+1

Theorem — In the short-range case s > d, such a point process exists for all T > (0



The long-range case s < d



Long-range case s < d E@QN) = min 1 Y V-

When s < d, particles will accumulate on the boundary 0€2

In fact, for s < d — 2 particles will be exactly on the boundary 02 by superharmonicity —AV, > 0

Theorem — For s < d and for Q = NY@ where |w| = 1and |dw| =0

NZ=S dv(x)dv
E(Q,N) ~ min ﬂ ) (Sy) = C(w) N°~*
2 v DX D | X — Y | -
>0 | | Uniform background
Negatively charged particles of positive charge
We add a uniform compensating background of opposite charge on €2 X1 ® ® 1
< Ph ®
E(2,N) := xl,g?eg Z Vilx; — ) — Z Pb L Vi(x; — y)dy A > HQ ) Vi(z — y)dzdy ®. 0
1<i<j<N i=1 X

Remark — For s < 0, one needs to assume neutrality p, = p

In physics, this is called (atomic lattice, core of stars etc.)



Existence of thermodynamic limit of (free) energy

Theorem — Ford > 1 and max(0,d —2) < s <doralsos=—1"ford =1, then for any sequence
Q = N for lw| =1 and |dw | = 0, we have existence of the thermodynamic limit for the (free)

enerqgy per unit volume

 EQ.N) _ F@QN,T)
lim = e(s, p), lim = f(s,p, T)
QR4 N—oo ‘Q‘ QR4 N—oo ‘Ql

For Coulomb s = 1 in dimensiond = 3 :
Generalization to Coulomb s =d —2ford > 1 :

1D Coulomb s = — 1:

Other values of s : works of

Why is the proof more complicated for long-range ?

If we do the same as in the short-range case (/.e. tile our domain in smaller domains), the interaction
between the smaller domains will be harder to make negligible due to the non-integrability of V'



Existence of the point processes in the long-range case s < d

The existence of a Riesz point process for T > 0 in the long-range case is much more complicated
and many results are still completely open.

In the short-range case s > d the existence of a Riesz point process 7" > 0 follows by proving local

bounds on the number of particles (no cluster and big holes). In the long-range case s < d, this is
not sufficient !

The difficulty is to define the potential generated inside a bounded domain D C R4 by the particles
outside in order to prove DLR equations because of the non-integrability of V. when s < d.

Theorems — Ve have existence of a Riesz point Remark — There are other characterization
process for the values: point processes than DLR equations and
cd—l<s<dforT>0andd> 1 which may be easier to work with :

, (KS)
« s=0andd=1frT >0 equations, (KMS)

e O<s<dind=12andd—-2<s<dford>3atT=0 condition...



Phase transition in Riesz gases In
dimension 1 : the (un)known.



What are phase transitions ?

There are many ways to define what a IS...

The simplest definition is whether or not the Riesz point process at 7" > 0 is

In the thermodynamics limit (V < o0), the model is invariant under both translations and rotations,

and It Is conjectured that the set of Riesz point process @S’T for a given s and T > 0 is either
reduced to a point (.e. no phase transition) or should be given by the convex hull of few simples

point processes | ; obtained by isometries.

At zero temperature, the states that 92, should be obtained by a
periodic latticel | (e.g. 1 | = p‘1Z in d = 1) and its image under translations and rotations.

At very high T' > 1 we expect X ;.7 IS reduced to a point invariant under isometries (fluid)

Theorem (Mermin—Wagner for Riesz gases) — In dimension d € {1,2} fors > d and T > 0,
the equilibrium states in S  are all translation-invariant (i.e. fluids). For d =1 and s > 2, K is
furthermore reduced to a single point (i.e. no phase transition)

Old « theorem » in physics which basically says there are no symmetry breaking in small dimensions



Phase diagram of 1D Riesz gases in s and [

s = —1:

Completely integrable model 2 T
It is crystalized at all temperature T > 0 ! long-range | - short-range —
s =0:
Integrable model linked to Gaussian ensembles in RMT =
_ | | | Z’,’: ) No phase transitions (fluid)
Crystalized for 7' = (), and point process is believed to be SB
unique & translation invariant for 7 > 0 (fluid) 1
o =2
.’ .0
There is a « phase transition » of a special kindat 7 = 1/2 b §
s> 0: &iiiiis ? ______________ >
Believed that the point process is unigue & translation for ¢— _ ¢ — () P ¢—9
T > O (known for s > 2) and cristalized for 7' = () Coulomb Gas Log-gas CSM

Q° — What is happening for —1 < s < (0 ?



What is happeningfor —1 < s < (0?

« An Interesting question is to fill the gaps in the
picture and understand, in particular, if there exists a
smooth transition curve to a periodic crystal in the

region—1 < s < 0. A similar question concerns the
BKT transition. »

Crystal

Numerics seem to confirm this intuition:

Coulomb Gas Log-gas



Monte Carlo simulations for —1 < s < 0O (I)

We simulate the Riesz gas with N > 1 using MCMC
We use periodic boundary conditions £ = Z/NZ

We use two-point correlation as detection tools

probability there is a particle

(2) —
p(x, ) at x and another particle at y

By periodicity, we consider g(r) := p'?(0,r)

Fluid g(r)—>1lasr— o

Solid g(r) A 1&is a function

Quasisolid (BKT) g(r) — 1 "very” slowly

2.0

1.5

0.5

0.0

Pair correlation (s = — 0.5)

— 1= 0.2
1= 0.5
== 1.0
1T'=5.0
1'=10.0

0

Observation — solid at low temperature and fluid at high temperature

10

15



Monte Carlo simulations for —1 < s < 0 (ll)

Another important quantity is the structure factor S(k) := g — o1 (k)
Behavior of § near k ~ 0 is linked with behavior of g(r) as r — o

Theorem - For a translation-invariant point process 1™ on R, if
S(k) ~ |k|" forn > 1 as k ~ 0, then there exists a family of mutually
singular (periodic) point processes {1y : 0 € [0,1]} s.t.

1

['(w) = J ['y(w)dO
0
In a nutshell : 1" is obtained by averaging a lattice (i.e. solid)

1t is observed numerically that for small T we have S(k) ~ 2T | k|' ™

Conjecture - For all —1 < s < 0, there exists a threshold I, such z‘hat

for all T < T the structure factor S(k) behaves like S(k) ~ 2T | k| I=s
when k ~ 0. This would imply crystallization by the previous theorem.

InS(k)

Structure factor (s = — 0.5)

——T7=0.2
—©—T=0.5
©-T=10
O-T=5.0
O T=10.07]

2gigsgeee I I I I
0.0 0.5 1.0 1.5 2.0

k

Structure factor (s = — 0.5)

10! |

102

=T — ().2
—=@=T'— (.5
&=T= 1.0




Conjectures and conclusion

From the numerics experiments, we may conjecture :

Conjecture - For all —1 < s < 0, there exists a threshold T, such that, for all T > T, the set of all
Riesz point process X o T IS reduced to a point which Is translation-invariant (i.e. fluid), and such that for

I < T, we have the set S  corresponds to the uniform probabilities over translations of the periodic

lattice p~1Z (i.e solid). Moreover, s + T, is monotonic and lim T, = co and lim T, = 0.
s—>—1 s—0

In fact, before we can even look for a (partial) proof this conjecture, one needs to define properly the
Riesz point processes for —1 <5 < 0 :

Problem - Can we actually prove that the set %S,T of Riesz point process IS non-empty for
—1<s<O0Oind=1foralT>07?

Non-trivial questions that will hopefully interest an ever-growing community :)



Thank you !



Hyperuniformity

Definition — A point process 1 is said to be for all bounded D C IRd, we have that
Var(ny,) = o(|D|) where ny(w) = # I'(w) N D.

The original theorem of actually reads:

Theorem - Any translation-invariant point process 1" on R with bounded fluctuations on number
of points, that is Var(np) = O(1), then there exists a family of mutually singular...

Therefore, one way to prove our conjecture is to show that at low enough temperature 7' << 1

a Riesz point process for —1 < s < 0 has bounded fluctuations of the local number of
points.

In fact, if the Riesz point process is indeed a fluid at high enough temperature, we conjecture:

Conjecture - For all —1 < s < 0, there exists a threshold T such that for all T > T, we have
Var(np) = O(In|D|)andforall T < T, we have Var(np) = O(1)



The Berezinsky —Kosterlitz— Thouless transition
It is believed that the 1D log-gas (s = 0, d = 1) has no phase transition for 77> 0O

Nevertheless, it exhibits a « phase transition » reminiscent of the BKT transition in d = 2

T
1 —— I'>1/2
er
{ 4 cos@an) 1 T =1/ At T'= 1/2 we transition from an universal decay to one which
8(r) ~r oo B > 2272 — depends on the temperatures (and oscillating terms appear)
cos(2xr) 1
l+c¢ o " T'<1/2
1.5 5 -
e=] ogarithmic — In|1 — k|
Al a=o0s1~1- 54—8
Remark — The expansion entails that 0= 076 1 Lo
| ~
Stk) ~ 2T | k| as k ~ () <
4T—-1 - °
Sk)y ~ |k— 1] as k ~ 1 7 )
T
which can be verified numerically: 1ot =7
0.0 st gggvfw L 1 1 1 I
0.0 01 02 03 04 05 0.900 0925 0950 0975  1.000

k k



