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The Riesz gases and their phase 
diagram in dimension 1 

On systems of interacting particles, IHES



What are Riesz gases ( ) ?d ≥ 1



What are formally Riesz gases ?
• Infinite # of point-like particles  in 


• The particles  interact through the Riesz potential :


• Sign is chosen to make  repulsive : particles want to get far away from one another


• Energy of -th particle in configuration :


• Short-range  : summable series for typical configurations 


• Long-range  : divergent series and renormalization is needed


• We will also consider positive temperature 

xj ℝd

xj

Vs

j0 {xj : j ∈ ℕ}

s > d

s ≤ d

T > 0

Vs(x) =
|x |−s s > 0
−ln |x | s = 0
− |x |−s −2 < s < 0

∑
j≠j0

Vs(xj − xj0)



Why do we care about Riesz gases ?

Coulomb gases

Riesz gases embodies several specific and important cases

 is the Coulomb potential in dimension 3s = 1
 is the « Coulomb » potential in dimension , i.e. solution to  s = d − 2 d ≥ 1 −ΔℝdVs = δ0

 is the « Coulomb » potential in dimension  restricted to hyperplans s = d − 1 d + 1 −Δℝd+1Vs = δℝd×{0}

Log gases

 in dimension  are very important models which are believed to be sort of « universal »  s = 0 d ∈ {1,2}
Examples — Gaussian ensemble in RMT, Ginzburg-Landau vortices, zeros of  function …ζ

Other examples

 in dimensions  is dipole-dipole interaction s = 3 d ∈ {1,2,3}
…



The short-range case s > d



Definition of the Riesz gases for      ( )s > d T = 0
The statistical physics way (thermodynamic limit)

Fix a domain  and place  particles inside  :Ω ⊂ ℝd N Ω Es(Ω, N) := min
x1,…,xN∈Ω ∑

1≤i<j≤N

Vs(xi − xj)

Thermodynamic limit :  and  and keep average density fixed Ω ↗ ℝd N → ∞ |Ω | /N := ρ > 0

Energy per unit volume :   with  e(s, ρ) := lim
Ω↗ℝd N→∞

Es(Ω, N)
|Ω |

|Ω |
N

= ρ

Theorem — The limit exists for , for 
 for  and , 

rewrites by scaling as  
and is independent of the shape of 

s > d
Ω = N1/dω |ω | = 1 |∂ω | = 0

e(s, ρ) = e(s)ρ1+s/d

ω
[Ruelle, Statistical Mechanics : Rigorous results, ’99]

Remark — By homogeneity, it holds that 
. Choosing , 

one may assume .
Es(Ω, N) = λsEs(λΩ, N) λ = ρ1/d

ρ = 1

Q° — How to define such an infinite system ?



Definition of the Riesz gases for      ( )s > d T > 0

Energy at temperature  :T > 0 Fs(Ω, N, T) := min
ℙ⊂ΩN ∫ΩN

∑
1≤i<j≤N

Vs(xi − xj) dℙ + T Ent(ℙ)

Gibbs variational principle : ℙs, Ω, N, T = Zs(Ω, N, T)−1 exp −
1
T ∑

1≤i<j≤N

Vs(xi − xj)

Partition function ∫ΩN

exp −
1
T ∑

1≤i<j≤N

Vs(xi − xj)

Free energy per unit volume :   with  f(s, ρ) := lim
Ω↗ℝd N→∞

Fs(Ω, N, T)
|Ω |

|Ω |
N

= ρ

Theorem — The limit exists for  for any sequence of domains  where  and 
. By scaling, we have that the limit rewrites as  and that it is independent 

of the shape of .

s > d Ω = N1/dω |ω | = 1
|∂ω | = 0 f(s, T, ρ) = f(s, T)ρ1+s/d

ω [Ruelle, Statistical Mechanics : Rigorous results, ’99]

The statistical physics way (thermodynamic limit)



Idea of proof  s > d

For hypercubes :

Take a big hypercube  for  CL = Lω ω = [−1,1]d

Tile  into  smaller hypercubes  with small corridors of size CL Ld /ℓd Cℓ ϵ ≪ ℓ ≪ L
In each small cubes, place  particles so as to minimize energy in  ℓd Cℓ

This gives a trial-state for the big cube and thus an upper bound

Es(CL, Ld) ≤
Ld

ℓd
E(Cℓ, ℓd) + Interaction between small cubes

Is(L,ℓ,ϵ)

By integrability of  in the short-range case , one can choose  
big enough to ensure that the interactions are small enough, so that

Vs s > d ϵ

lim sup
L→∞

Es(CL, Ld)
Ld

≤ lim inf
ℓ→∞

Es(Cℓ, ℓd)
ℓd ∎

For general domains  :Ω Tile the domain with hypercubes etc…

Prove subadditivity of the energy Es(Ω1 ∪ Ω2, N1 + N2) ≤ Es(Ω1, N1) + Es(Ω2, N2)



Infinite equilibrium configuration ( )T = 0
So far, we only looked at the (free) energy in the thermodynamic limit. What about the points ?
The problem is that the energy of an infinite configuration  is obviously infinite {xj : j ∈ ℕ}

Definition — An infinite equilibrium configuration 
 is a configuration which minimizes 

locally the energy in the sense that for any bounded 
 if we let  be the particles inside 

of , then 

A Riesz point process at T = 0 is then defined as a 
point process on  which concentrates over 
such equilibrium configurations.  

Theorem — In the short-range case , such a 
point process exists.   

{xj : j ∈ ℕ}

D ⊂ ℝd x1, …, xN
D

ℝd

s > d

x1, …, xN = arg min
y1,…,yN∈D ∑

1≤i<j≤N

Vs(yi − yj) +
N

∑
i=1

∞

∑
j=N+1

Vs(yi − xj)

[Lewin, JMP ’22]

Idea of proof — The minimizers of  do not 
cluster or leave big holes (i.e. number of points is 
locally bounded above and below). Take the 
thermodynamic limit and use compactness. 

Es(Ω, N)



Infinite equilibrium configuration ( )T > 0
In the positive temperature case , a similar definition holds T > 0

Definition — A Riesz point process at temperature T > 0 is a point process on  such that for any 
bounded  the conditional law  of the point process given that the number of points in  is 

 and the positions  of the particles outside of  verifies 

This is called the (canonical) Dobrushin—Lanford—Ruelle (DLR) equations. 

ℝd

D ⊂ ℝd ℙs, T, D D
N {xk}∞

k=N+1 D

ℙs, T, D(y1, …, yN) = Z(s, T, D)−1 exp −
1
T ∑

1≤i<j≤N

Vs(yi − yj) +
N

∑
i=1

∞

∑
k=N+1

Vs(yi − xk)

ℙs, T, D = arg min
ℙ⊂DN ∫DN

∑
1≤i<j≤N

Vs(yi − yj) +
N

∑
i=1

∞

∑
k=N+1

Vs(yi − xk) dℙ + T Ent(P)

Remark — According to Gibbs variational principle :

Theorem — In the short-range case , such a point process exists for all s > d T > 0 [Lewin, JMP ’22]



The long-range case s < d



Long-range case s ≤ d Es(Ω, N) := min
x1,…,xN∈Ω ∑

1≤i<j≤N

Vs(xi − xj)

When , particles will accumulate on the boundary  s ≤ d ∂Ω
In fact, for   particles will be exactly on the boundary  by superharmonicity  s ≤ d − 2 ∂Ω −ΔVs ≥ 0

Theorem — For  and for  where  and  s ≤ d Ω = N1/dω |ω | = 1 |∂ω | = 0

Es(Ω, N) ∼
N2−s

2
min

ν ∬ω×ω

dν(x)dν(y)
|x − y |s = C(ω)

⏟
>0

N2−s [Choquet ’52, Messer—Spohn ’82]

Renormalisation

We add a uniform compensating background of opposite charge on Ω

Uniform background
of positive chargeNegatively charged particles

Es(Ω, N) := min
x1,…,xN∈Ω ∑

1≤i<j≤N

Vs(xi − xj) −
N

∑
i=1

ρb ∫Ω
Vs(xi − y)dy +

ρ2
b

2 ∬Ω×Ω
Vs(z − y)dzdy

Remark — For , one needs to assume neutrality s ≤ 0 ρb = ρ

In physics, this is called Jellium (atomic lattice, core of stars etc.)



Existence of thermodynamic limit of (free) energy
Theorem — For  and   or also  for , then for any sequence 

 for  and , we have existence of the thermodynamic limit for the (free) 
energy per unit volume

d ≥ 1 max(0,d − 2) ≤ s < d s = − 1 d = 1
Ω = N1/dω |ω | = 1 |∂ω | = 0

 , lim
Ω↗ℝd N→∞

Es(Ω, N)
|Ω |

= e(s, ρ)   lim
Ω↗ℝd N→∞

Fs(Ω, N, T)
|Ω |

= f(s, ρ, T)

For Coulomb  in dimension  : [Lieb—Narnhofer, ’75]s = 1 d = 3
Generalization to Coulomb  for  : [Sari—Merlini, ‘76]s = d − 2 d ≥ 1
1D Coulomb : [Kunz, ’74]s = − 1
Other values of  : works of [Serfaty, Leblé, Petrache, Rougerie, Sandier…]s

Why is the proof more complicated for long-range ? 
If we do the same as in the short-range case (i.e. tile our domain in smaller domains), the interaction 
between the smaller domains will be harder to make negligible due to the non-integrability of  Vs



Existence of the point processes in the long-range case s ≤ d

In the short-range case  the existence of a Riesz point process  follows by proving local 
bounds on the number of particles (no cluster and big holes). In the long-range case , this is 
not sufficient !

s > d T ≥ 0
s ≤ d

The difficulty is to define the potential generated inside a bounded domain  by the particles 
outside in order to prove DLR equations because of the non-integrability of  when . 

D ⊂ ℝd

Vs s ≤ d

The existence of a Riesz point process for  in the long-range case is much more complicated 
and many results are still completely open.

T ≥ 0

Theorems —  We have existence of a Riesz point 
process for the values: 
•  for  and  

•  and  for  

•  in  and  for  at 

d − 1 < s < d T > 0 d ≥ 1
s = 0 d = 1 T > 0
0 < s < d d = 1,2 d − 2 ≤ s < d d ≥ 3 T = 0

[Dereudre & Vasseur ’21]

[Dereudre, Hardy, Leblé & Maïda ’21]

[Lewin ’22]

Remark — There are other characterization 
point processes than DLR equations and 
which may be easier to work with : BBKGY 
hierarchy, Kirkwood-Salsburg (KS) 
equations, Kubo-Martin-Schwinger (KMS) 
condition…  



Phase transition in Riesz gases in 
dimension 1 : the (un)known.



What are phase transitions ?
There are many ways to define what a phase transition is…

The simplest definition is whether or not the Riesz point process at  is unique.T ≥ 0

In the thermodynamics limit ( ), the model is invariant under both translations and rotations, 
and it is conjectured that the set of Riesz point process  for a given  and  is either 
reduced to a point (i.e. no phase transition) or should be given by the convex hull of few simples 
point processes  obtained by isometries.

N < ∞
ℛs,T s T ≥ 0

Γi

At zero temperature, the cristallisation conjecture states that  should be obtained by a 
periodic lattice  (e.g.  in ) and its image under translations and rotations. 

ℛs,0
Γ1 Γ1 = ρ−1ℤ d = 1

At very high  we expect  is reduced to a point invariant under isometries (fluid)T ≫ 1 ℛs,T

Theorem (Mermin—Wagner for Riesz gases) — In dimension  for  and , 
the equilibrium states in  are all translation-invariant (i.e. fluids). For  and ,  is 
furthermore reduced to a single point (i.e. no phase transition)

d ∈ {1,2} s > d T > 0
ℛs,T d = 1 s > 2 ℛs,T

Old « theorem » in physics which basically says there are no symmetry breaking in small dimensions

[Fröhlich & Pfister, ’81 & ’86] [Papangelou, ’87]



T

No phase transitions (fluid)

T = 1
2
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 long-range short-range!
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s =�1 s = 0 s = 1 s = 2
Coulomb Gas Log-gas CSM

Phase diagram of 1D Riesz gases in  and s T
Coulomb gas  :s = − 1
Completely integrable model

It is crystalized at all temperature  !T ≥ 0

Log gas  :s = 0
Integrable model linked to Gaussian ensembles in RMT 

Crystalized for , and point process is believed to be 
unique & translation invariant for  (fluid)

T = 0
T > 0

There is a « phase transition » of a special kind at T = 1/2

Case  :s > 0
Believed that the point process is unique & translation for 

 (known for )  and cristalized for T > 0 s > 2 T = 0

Q° — What is happening for  ?−1 < s < 0

[Serfaty & Sandier ’15, Leblé ’15, Erbar, Huesmann, Leblé ’21]

[Forrester ’84 & ’10]

[Kunz ’74, Aizenman & Martin ’80]



What is happening for  ?−1 < s < 0

T
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al

Quasisolid (BKT)

T = 1
2

s =�1 s = 0
Coulomb Gas Log-gas

«  An interesting question is to fill the gaps in the 
picture and understand, in particular, if there exists a 
smooth transition curve to a periodic crystal in the 
region . A similar question concerns the 
BKT transition. »  [Lewin, ’22]


−1 < s < 0

Numerics seem to confirm this intuition:
Phase transitions in one-dimensional Riesz gases 
with long-range interaction, L ‘23



Monte Carlo simulations for  (I)−1 < s < 0

We simulate the Riesz gas with  using MCMCN ≫ 1

We use periodic boundary conditions Ω = ℤ/Nℤ

We use two-point correlation as detection tools

ρ(2)(x, y) =

By periodicity, we consider g(r) := ρ(2)(0,r)

How to detect fluid/solid phase ?

• Two-particle marginal ⇢(2)(x , y):

⇢(2)(A⇥ B) = E

2

4
X

1i<jN

1A(ri )1B(rj)

3

5 (1)

• Periodic boundary conditions : pair correlation g(r) := ⇢(2)(0, r)

Fluid g(r) ! 1 as r ! 1 rapidly/monotonically

Solid g(r) 6! 1 & is a periodic function

Quasisolid (BKT) g(r) ! 1 ”very” slowly

What we did

Simulate our system (MCMC) and compute g(r) for various s 2 (�1, 0) and T > 0.

27 / 34

Observation — solid at low temperature and fluid at high temperature 

probability there is a particle 
at  and another particle at x y



Monte Carlo simulations for  (II)−1 < s < 0
Another important quantity is the structure factor  S(k) := ̂g − 1 (k)

Behavior of  near  is linked with behavior of  as  S k ∼ 0 g(r) r → ∞

Theorem – For a translation-invariant point process  on , if  
 for  as , then there exists a family of mutually 

singular (periodic) point processes  s.t. 

Γ ℝ
S(k) ∼ |k |η η > 1 k ∼ 0

{Γθ : θ ∈ [0,1]}

Γ(ω) = ∫
1

0
Γθ(ω)dθ [Aizenman, Goldstein & Lebowitz ’01]

In a nutshell :  is obtained by averaging a lattice (i.e. solid)Γ

It is observed numerically that for small  we have T S(k) ≃ 2T |k |1−s

Conjecture – For all , there exists a threshold  such that, 
for all  the structure factor  behaves like  
when . This would imply crystallization by the previous theorem. 

−1 < s < 0 Ts
T < Ts S(k) S(k) ∼ 2T |k |1−s

k ∼ 0



Conjectures and conclusion

From the numerics experiments, we may conjecture :

Conjecture – For all , there exists a threshold  such that, for all  the set of all 
Riesz point process   is reduced to a point which is translation-invariant (i.e. fluid), and such that for 

 we have the set  corresponds to the uniform probabilities over translations of the periodic 
lattice  (i.e solid). Moreover,  is monotonic and  and .

−1 < s < 0 Ts T > Ts
ℛs,T

T < Ts ℛs,T
ρ−1ℤ s ↦ Ts lim

s→−1
Ts = ∞ lim

s→0
Ts = 0

In fact, before we can even look for a (partial) proof this conjecture, one needs to define properly the 
Riesz point processes for  :−1 < s < 0

Problem – Can we actually prove that the set  of Riesz point process is non-empty for 
 in  for all  ?

ℛs,T
−1 < s < 0 d = 1 T ≥ 0

Non-trivial questions that will hopefully interest an ever-growing community :) 



Thank you !



Hyperuniformity

Definition — A point process  is said to be hyperuniform for all bounded , we have that  
 where .

Γ D ⊂ ℝd

Var(nD) = o( |D | ) nD(ω) = ♯ Γ(ω) ∩ D

The original theorem of [Aizenman, Goldstein & Lebowitz ’01] actually reads:

Theorem – Any translation-invariant point process  on  with bounded fluctuations on number 
of points, that is , then there exists a family of mutually singular… 

Γ ℝ
Var(nD) = O(1)

Therefore, one way to prove our conjecture is to show that at low enough temperature  
a Riesz point process for  has bounded fluctuations of the local number of 
points.

T ≪ 1
−1 < s < 0

In fact, if the Riesz point process is indeed a fluid at high enough temperature, we conjecture: 

Conjecture – For all , there exists a threshold  such that for all  we have 
 and for all  we have 

−1 < s < 0 Ts T > Ts
Var(nD) = O(ln |D | ) T < Ts Var(nD) = O(1)



The Berezinsky—Kosterlitz— Thouless transition 
It is believed that the 1D log-gas ( ) has no phase transition for s = 0, d = 1 T > 0
Nevertheless, it exhibits a « phase transition » reminiscent of the BKT transition in d = 2

[Forrester ’84] 

g(r) ∼r→∞

1 − T
π2r2 T > 1/2

1 + cos(2πr)
2π2r2 − 1

2π2r2 T = 1/2

1 + c cos(2πr)
r4T − 1

2π2r2 T < 1/2

At  we transition from an universal decay to one which 
depends on the temperatures (and oscillating terms appear)

T = 1/2

Remark — The expansion entails that

          as  S(k) ∼ 2T |k | k ∼ 0
 as S(k) ∼ |k − 1 |4T−1 k ∼ 1

which can be verified numerically:


