The Riesz gases and their phase diagram in dimension 1 On systems of interacting particles, IHES

Rodrigue Lelotte (CERMICS @ Ecole des Ponts)

What are Riesz gases ($d \ge 1$)?

What are formally Riesz gases?

- Infinite # of point-like particles x_i in \mathbb{R}^d
- The particles x_i interact through the Riesz potential :

 $V_{s}(x) = \begin{cases} |x|^{-s} \\ -\ln|s| \\ -|x|^{s} \end{cases}$

- Sign is chosen to make V_s repulsive : particles want to get far away from one another
- Energy of j_0 -th particle in configuration $\{x_i : j\}$
- Short-range s > d: summable series for typical configurations
- Long-range $s \leq d$: divergent series and renormalization is needed
- We will also consider positive temperature T > 0

$$s > 0$$

$$|x| \qquad s = 0$$

$$|^{-s} \qquad -2 < s < 0$$

$$\in \mathbb{N} \}: \qquad \sum_{j \neq j_0} V_s(x_j - x_{j_0})$$

Why do we care about Riesz gases?

Riesz gases embodies several specific and important cases

Coulomb gases

- s = 1 is the Coulomb potential in dimension 3
- s = d 2 is the « Coulomb » potential in dimension $d \ge 1$, *i.e.* solution to $-\Delta_{\mathbb{R}^d} V_s = \delta_0$

Log gases

. . .

- **Examples** Gaussian ensemble in RMT, Ginzburg-Landau vortices, zeros of ζ function ...

Other examples

s = 3 in dimensions $d \in \{1, 2, 3\}$ is dipole-dipole interaction

s = d - 1 is the « Coulomb » potential in dimension d + 1 restricted to hyperplans $-\Delta_{\mathbb{R}^{d+1}}V_s = \delta_{\mathbb{R}^d \times \{0\}}$

s = 0 in dimension $d \in \{1, 2\}$ are very important models which are believed to be sort of « universal »

The short-range case s > d

Definition of the Riesz gases for s > d (T = 0) The statistical physics way (thermodynamic limit)

Q° – How to define such an infinite system ?

Fix a domain $\Omega \subset \mathbb{R}^d$ and place N particles insi

Thermodynamic limit: $\Omega \nearrow \mathbb{R}^d$ and $N \rightarrow \infty$ and keep average density fixed $|\Omega|/N := \rho > 0$

 $e(s,\rho) := \lim_{\Omega \nearrow \mathbb{R}^d N}$ **Energy per unit volume :**

Remark – By homogeneity, it holds that $E_{s}(\Omega, N) = \lambda^{s} E_{s}(\lambda \Omega, N)$. Choosing $\lambda = \rho^{1/d}$, one may assume $\rho = 1$.

side
$$\Omega$$
: $E_s(\Omega, N) := \min_{x_1, \dots, x_N \in \Omega} \left\{ \sum_{1 \le i < j \le N} V_s(x_i - x_j) \right\}$

$$\sum_{N \to \infty} \frac{E_s(\Omega, N)}{|\Omega|} \text{ with } \frac{|\Omega|}{N} = \rho$$

Theorem — The limit exists for s > d, for $\Omega = N^{1/d}\omega$ for $|\omega| = 1$ and $|\partial\omega| = 0$, rewrites by scaling as $e(s,\rho) = e(s)\rho^{1+s/d}$ and is independent of the shape of ω

[Ruelle, Statistical Mechanics : Rigorous results, '99]

Definition of the Riesz gases for s > d (T > 0) The statistical physics way (thermodynamic limit)

Energy at temperature T > 0: $F_{c}(\Omega, N, T) :=$

of the shape of ω . [Ruelle, Statistical Mechanics : Rigorous results, '99]

$$\min_{\mathbb{P}\subset\Omega^{N}} \left\{ \int_{\Omega^{N}} \left(\sum_{1\leq i< j\leq N} V_{s}(x_{i}-x_{j}) \right) d\mathbb{P} + T \operatorname{Ent}(\mathbb{P}) \right\}$$
$$, N, T)^{-1} \exp\left(-\frac{1}{T} \sum_{1\leq i< j\leq N} V_{s}(x_{i}-x_{j}) \right)$$

$$\lim_{\mathbb{R}^d \to \infty} \frac{F_s(\Omega, N, T)}{|\Omega|} \text{ with } \frac{|\Omega|}{N} = \rho$$

Theorem – The limit exists for s > d for any sequence of domains $\Omega = N^{1/d}\omega$ where $|\omega| = 1$ and $\partial \omega = 0$. By scaling, we have that the limit rewrites as $f(s, T, \rho) = f(s, T)\rho^{1+s/d}$ and that it is independent

Idea of proof s > d

Prove subadditivity of the energy $E_s(\Omega_1 \cup \Omega_2, N_1 + N_2) \leq E_s(\Omega_1, N_1) + E_s(\Omega_2, N_2)$ For hypercubes :

Take a big hypercube $C_L = L\omega$ for $\omega = [-1,1]^d$ Tile C_L into L^d/ℓ^d smaller hypercubes C_ℓ with small corridors of size $\epsilon \ll \ell \ll L$ In each small cubes, place ℓ^d particles so as to minimize energy in C_ℓ This gives a trial-state for the big cube and thus an upper bound

$$E_{s}(C_{L}, L^{d}) \leq \frac{L^{d}}{\ell^{d}} E(C_{\ell}, \ell^{d}) + \underbrace{\text{Interaction betwe}}_{I_{s}(L, \ell)}$$

By integrability of V_s in the short-range case s > d, one can choose ϵ big enough to ensure that the interactions are small enough, so that

$$\limsup_{L \to \infty} \frac{E_s(C_L, L^d)}{L^d} \le \liminf_{\ell \to \infty} \frac{E_s(C_\ell, d)}{\ell^d}$$

For general domains Ω : Tile the domain with hypercubes etc...

- en small cubes

 (e,ϵ)

Infinite equilibrium configuration (T = 0)

So far, we only looked at the (free) energy in the thermodynamic limit. What about the points ? The problem is that the energy of an infinite configuration $\{x_i : j \in \mathbb{N}\}$ is obviously infinite

Definition – An infinite equilibrium configuration $\{x_i : j \in \mathbb{N}\}$ is a configuration which minimizes locally the energy in the sense that for any bounded $D \subset \mathbb{R}^d$ if we let x_1, \ldots, x_N be the particles inside of *D*, then

$$x_1, \dots, x_N = \arg \min_{y_1, \dots, y_N \in D} \left\{ \sum_{1 \le i < j \le N} V_s(y_i - y_j) + \sum_{i=1}^N \sum_{j=N+1}^\infty V_{ij} \right\}$$

A Riesz point process at T = 0 is then defined as a point process on \mathbb{R}^d which concentrates over such equilibrium configurations.

Theorem — In the short-range case s > d, such a point process exists. [Lewin, JMP '22]

Idea of proof – The minimizers of $E_{s}(\Omega, N)$ do not cluster or leave big holes (i.e. number of points is locally bounded above and below). Take the thermodynamic limit and use compactness.

Infinite equilibrium configuration (T > 0)

In the positive temperature case T > 0, a similar definition holds

Definition – A Riesz point process at temperature T > 0 is a point process on \mathbb{R}^d such that for any bounded $D \subset \mathbb{R}^d$ the conditional law $\mathbb{P}_{s,T,D}$ of the point process given that the number of points in D is N and the positions $\{x_k\}_{k=N+1}^{\infty}$ of the particles outside of D verifies

$$\mathbb{P}_{s,T,D} = \arg\min_{\mathbb{P}\subset D^N} \left\{ \int_{D^N} \left(\sum_{1 \le i < j \le N} V_s(y_i - y_j) + \sum_{i=1}^N \sum_{k=N+1}^\infty V_s(y_i - x_k) \right) d\mathbb{P} + T \operatorname{Ent}(P) \right\}$$

This is called the (canonical) Dobrushin—Lanford—Ruelle (DLR) equations. **Remark** – According to **Gibbs variational principle** : $\mathbb{P}_{s, T, D}(y_1, \dots, y_N) = Z(s, T, D)^{-1} \exp\left(-\frac{1}{T}\right)$

Theorem – In the short-range case s > d, such a point process exists for all T > 0[Lewin, JMP '22]

$$\left(\sum_{1 \le i < j \le N} V_s(y_i - y_j) + \sum_{i=1}^N \sum_{k=N+1}^\infty V_s(y_i - x_k)\right)$$

The long-range case s < d

Long-range case $s \leq d$

When $s \leq d$, particles will accumulate on the boundary $\partial \Omega$

Theorem – For $s \leq d$ and for $\Omega = N^{1/d} \omega$ where

$$E_s(\Omega, N) \sim \frac{N^{2-s}}{2} \min_{\nu} \iint_{\omega \times \omega} \frac{d\nu(x)d\nu(y)}{|x-y|^s} = \underbrace{C(\omega)}_{>0} N^{2-s}$$

Renormalisation

We add a uniform compensating background of opposite charge on Ω

$$E_s(\Omega, N) := \min_{x_1, \dots, x_N \in \Omega} \left\{ \sum_{1 \le i < j \le N} V_s(x_i - x_j) - \sum_{i=1}^N \rho_b \int_{\Omega} V_s(x_i - x_j) \right\}$$

Remark – For $s \leq 0$, one needs to assume neutrality $\rho_h = \rho$

In physics, this is called **Jellium** (atomic lattice, core of stars etc.)

$$E_s(\Omega, N) := \min_{x_1, \dots, x_N \in \Omega} \left\{ \sum_{1 \le i < j \le N} V_s(x_i - x_j) \right\}$$

In fact, for $s \le d-2$ particles will be exactly on the boundary $\partial \Omega$ by superharmonicity $-\Delta V_s \ge 0$

e
$$|\omega| = 1$$
 and $|\partial \omega| = 0$

[Choquet '52, Messer—Spohn '82]

Existence of thermodynamic limit of (free) energy

Theorem – For $d \ge 1$ and $\max(0, d-2) \le s < d$ or also s = -1 for d = 1, then for any sequence $\Omega = N^{1/d}\omega$ for $|\omega| = 1$ and $|\partial\omega| = 0$, we have existence of the thermodynamic limit for the (free) energy per unit volume

$$\lim_{\Omega \nearrow \mathbb{R}^d N \to \infty} \frac{E_s(\Omega, N)}{|\Omega|} = e(s, \rho), \qquad \lim_{\Omega \nearrow \mathbb{R}^d N \to \infty} \frac{F_s(\Omega, N, T)}{|\Omega|} = f(s, \rho, T)$$

For Coulomb s = 1 in dimension d = 3: [Lieb—Narnhofer, '75] Generalization to Coulomb s = d - 2 for $d \ge 1$: [Sari-Merlini, '76] 1D Coulomb s = -1: [Kunz, '74]

Other values of s : works of Serfaty, Leblé, Petrache, Rougerie, Sandier...]

Why is the proof more complicated for long-range?

If we do the same as in the short-range case (*i.e.* tile our domain in smaller domains), the interaction between the smaller domains will be harder to make negligible due to the non-integrability of V_s

Existence of the point processes in the long-range case $s \leq d$

and many results are still completely open.

not sufficient !

outside in order to prove DLR equations because of the non-integrability of V_s when $s \leq d$.

- **Remark** There are other characterization point processes than DLR equations and which may be easier to work with : **BBKGY** hierarchy, Kirkwood-Salsburg (KS) equations, Kubo-Martin-Schwinger (KMS) condition...
- **Theorems** We have existence of a Riesz point process for the values: • d-1 < s < d for T > 0 and $d \ge 1$ [Dereudre & Vasseur '21] • s = 0 and d = 1 for T > 0 [Dereudre, Hardy, Leblé & Maïda '21] • 0 < s < d in d = 1,2 and $d - 2 \le s < d$ for $d \ge 3$ at T = 0 [Lewin '22]

- The existence of a Riesz point process for $T \ge 0$ in the long-range case is **much more complicated**
- In the short-range case s > d the existence of a Riesz point process $T \ge 0$ follows by proving local bounds on the number of particles (no cluster and big holes). In the long-range case $s \leq d$, this is
- The difficulty is to define the potential generated inside a bounded domain $D \subset \mathbb{R}^d$ by the particles

dimension 1 : the (un)known.

Phase transition in Riesz gases in

What are phase transitions?

There are many ways to define what a phase transition is...

The simplest definition is whether or not the Riesz point process at $T \ge 0$ is unique.

point processes Γ_i obtained by isometries.

periodic lattice Γ_1 (e.g. $\Gamma_1 = \rho^{-1}\mathbb{Z}$ in d = 1) and its image under translations and rotations.

At very high $T \gg 1$ we expect $\mathscr{R}_{s,T}$ is reduced to a point invariant under isometries (fluid)

furthermore reduced to a single point (i.e. no phase transition) [Fröhlich & Pfister, '81 & '86] [Papangelou, '87]

Old « theorem » in physics which basically says there are no symmetry breaking in small dimensions

- In the thermodynamics limit ($N < \infty$), the model is invariant under both translations and rotations, and it is conjectured that the set of Riesz point process $\mathscr{R}_{s,T}$ for a given s and $T \ge 0$ is either reduced to a point (*i.e.* no phase transition) or should be given by the convex hull of few simples
- At zero temperature, the cristallisation conjecture states that $\mathscr{R}_{s,0}$ should be obtained by a

Theorem (Mermin–Wagner for Riesz gases) – In dimension $d \in \{1,2\}$ for s > d and T > 0, the equilibrium states in \mathscr{R}_{sT} are all translation-invariant (i.e. fluids). For d=1 and s>2, \mathscr{R}_{sT} is

Phase diagram of 1D Riesz gases in \boldsymbol{s} and \boldsymbol{T}

Coulomb gas s = -1:

Completely integrable model [Kunz '74, Aizenman & Martin '80]

It is crystalized at all temperature $T \ge 0$!

Log gas s = 0:

Integrable model linked to Gaussian ensembles in RMT

Crystalized for T = 0, and point process is believed to be unique & translation invariant for T > 0 (fluid) [Serfaty & Sandier '15, Leblé '15, Erbar, Huesmann, Leblé '21]

There is a « phase transition » of a special kind at T = 1/2[Forrester '84 & '10]

Case s > 0:

Believed that the point process is unique & translation for T > 0 (known for s > 2) and cristalized for T = 0

Q° – What is happening for -1 < s < 0?

What is happening for -1 < s < 0?

« An interesting question is to fill the gaps in the picture and understand, in particular, if there exists a smooth transition curve to a periodic crystal in the region -1 < s < 0. A similar question concerns the BKT transition. » [Lewin, '22]

Numerics seem to confirm this intuition:

Phase transitions in one-dimensional Riesz gases with long-range interaction, L '23

Monte Carlo simulations for -1 < s < 0 (I)

We simulate the Riesz gas with $N \gg 1$ using MCMC We use periodic boundary conditions $\Omega = \mathbb{Z}/N\mathbb{Z}$

We use **two-point correlation** as detection tools

probability there is a particle $\rho^{(2)}(x,y) =$ at x and another particle at y

By periodicity, we consider $g(r) := \rho^{(2)}(0,r)$

Fluid	$g(r) ightarrow 1$ as $r ightarrow \infty$ rapidly/monotor
Solid	g(r) e 1 & is a periodic function
Quasisolid (BKT)	g(r) ightarrow 1 "very" slowly

Observation — solid at low temperature and fluid at high temperature

Monte Carlo simulations for -1 < s < 0 (II)

Another important quantity is the structure factor S(k) := g - 1(k)Behavior of S near $k \sim 0$ is linked with behavior of g(r) as $r \rightarrow \infty$

Theorem – For a translation-invariant point $S(k) \sim |k|^{\eta}$ for $\eta > 1$ as $k \sim 0$, then there exists singular (periodic) point processes { Γ_{θ} : $\theta \in [0,1]$ $\Gamma(\omega) = \int \Gamma_{\theta}(\omega) d\theta$

In a nutshell : Γ is obtained by averaging a lattice (i.e. solid)

It is observed numerically that for small T we have

Conjecture – For all -1 < s < 0, there exists a threshold T_s such that, for all $T < T_s$ the structure factor S(k) behaves like $S(k) \sim 2T |k|^{1-s}$ when $k \sim 0$. This would imply crystallization by the previous theorem.

 $\ln(k)$

process
$$\Gamma$$
 on \mathbb{R} , if
sts a family of mutually
]} s.t.

[Aizenman, Goldstein & Lebowitz '01]

$$\operatorname{ve} S(k) \simeq 2T |k|^{1-s}$$

Conjectures and conclusion

From the numerics experiments, we may conjecture :

Conjecture – For all -1 < s < 0, there exists a threshold T_s such that, for all $T > T_s$ the set of all Riesz point process $\mathscr{R}_{s,T}$ is reduced to a point which is translation-invariant (i.e. fluid), and such that for $T < T_s$ we have the set $\mathscr{R}_{s,T}$ corresponds to the uniform probabilities over translations of the periodic lattice $\rho^{-1}\mathbb{Z}$ (i.e solid). Moreover, $s \mapsto T_s$ is monotonic and $\lim T_s = \infty$ and $\lim T_s = 0$. $S \rightarrow -1$ $S \rightarrow ()$

Riesz point processes for -1 < s < 0:

Problem – Can we actually prove that the set $\mathscr{R}_{s,T}$ of Riesz point process is non-empty for -1 < s < 0 in d = 1 for all $T \ge 0$?

Non-trivial questions that will hopefully interest an ever-growing community :)

In fact, before we can even look for a (partial) proof this conjecture, one needs to define properly the

Hyperuniformity

 $Var(n_D) = o(|D|)$ where $n_D(\omega) = \sharp \Gamma(\omega) \cap D$.

The original theorem of [Aizenman, Goldstein & Lebowitz '01] actually reads:

of points, that is $Var(n_D) = O(1)$, then there exists a family of mutually singular...

Therefore, one way to prove our conjecture is to show that at low enough temperature $T \ll 1$ a Riesz point process for -1 < s < 0 has bounded fluctuations of the local number of points.

In fact, if the Riesz point process is indeed a fluid at high enough temperature, we conjecture:

Conjecture – For all -1 < s < 0, there exists a threshold T_s such that for all $T > T_s$ we have $Var(n_D) = O(\ln |D|)$ and for all $T < T_s$ we have $Var(n_D) = O(1)$

Definition – A point process Γ is said to be hyperuniform for all bounded $D \subset \mathbb{R}^d$, we have that

Theorem – Any translation-invariant point process Γ on \mathbb{R} with bounded fluctuations on number

The Berezinsky—Kosterlitz—Thouless transition

It is believed that the 1D log-gas (s = 0, d = 1) has no phase transition for T > 0Nevertheless, it exhibits a « phase transition » reminiscent of the BKT transition in d = 2

$$\int 1 - \frac{T}{\pi^2 r^2} \qquad \qquad T > 1/2$$

$$g(r) \sim_{r \to \infty} \begin{cases} 1 + \frac{\cos(2\pi r)}{2\pi^2 r^2} - \frac{1}{2\pi^2 r^2} & T = 1/2 \\ 1 + c \frac{\cos(2\pi r)}{r^{4T}} - \frac{1}{2\pi^2 r^2} & T < 1/2 \end{cases}$$

Remark – The expansion entails that $S(k) \sim 2T |k| \qquad \text{as } k \sim 0$ $S(k) \sim |k-1|^{4T-1} \operatorname{as} k \sim 1$

which can be verified numerically:

At T = 1/2 we transition from an universal decay to one which depends on the temperatures (and oscillating terms appear) [Forrester '84]

