PRACTICAL WORK II

You are allowed to write your code in *any* languge that suits you the best, as long as the final code is runnable and debugged. That being said, as previously, a notebook in Python is available on my personal webpage at <https://www.ceremade.dauphine.fr/~lelotte/>. The notebook already contains most (if not all) of the code needed to answer all the questions of this practical work is a (very) reasonable amount of time — your job is simply to \ast fill the gaps \ast in the code. When asked to « comment » or « explain » something, add either a comment (in the code) or a textual cell (in the notebook). Send your work at [lelotte@ceremade.dauphine.fr.](mailto:lelotte@ceremade.dauphine.fr)

I — « Primum prima »

The backbone of SDE's theory is the very existence of the Wiener process $(W_t)_{t\geq0}$, named after NORBERT WIENER (1894–1964), as well as that of the Ito integral, named after KIYOSHI ITO (1915–2008), i.e. a rigorous definition of the quantity

$$
\int_0^T f(s, X_s) \mathrm{d}W_s. \tag{1}
$$

Problem 1. Implement a function $W(T,N)$ that (approximatively) simulates the *Wiener process* on [0, T] with step-size $h = T/N$, where $N \in \mathbb{N}$, and plot several paths — e.g. with $T = 2$ and $N = 400$. Then, implement a function $I(f, T, N, Ws)$ which approximates the Ito integral [\(1\)](#page-0-0) on $[0, T]$, where f is the integrand and Ws is a path of the Wiener process.

II — Schemes and orders of convergence

When resorting to a numerical scheme to solve a SDE of the form

$$
dX_t = a(t, X_t)dt + b(t, X_t)dW_t, \quad X_0 = x_0,
$$
\n(2)

we have seen that, similarly to the deterministic case, one can define the order of strong (resp. weak) convergence $\gamma_s > 0$ (resp. $\gamma_w > 0$) of the considered scheme (see **Definition 4.19 & 4.20** of the lecture notes). The [Theorem 4.22] states that $\gamma_s = \frac{1}{2}$ $\frac{1}{2}$ and $\gamma_w = 1$ (resp. $\gamma_s = \gamma_w = 1$) for the *Euler-Marumaya scheme* (resp. the *Milstein* scheme).

2 PRACTICAL WORK II

Problem 2. In this problem, let us consider an important growth model with added noise, namely the *Gompertzian Stochastic Model*,

$$
dX_t = -\beta X_t \ln(X_t) dt + \gamma X_t dW_t \quad \text{with } \beta, \gamma \in \mathbb{R}, \tag{3}
$$

which corresponds in [\(2\)](#page-0-1) to the choices $a(t, x) = -\beta x \ln(x)$ and $b(t, x) =$ γx . In turns out that the solution $(X_t)_{t\geq0}$ of [\(3\)](#page-1-0) has an explicit formula, namely $[Bonus - Prove this formula using the Ito formula$ by considering $Y_t = e^{bt} \ln(X_t)$.

$$
X_t = \exp\left\{\ln(x_0)e^{-bt} - \frac{c^2}{2b}(1 - e^{-bt}) + ce^{-bt} \int_0^t e^{bs} dW_s\right\}.
$$
 (4)

Implement the Euler-Maruyama scheme (resp. the Milstein scheme) on $[0, T]$ with $T = 1$ and with a uniformly-spaced discretization grid (*i.e.* $h = T/N$ for some $N \in \mathbb{N}$), and confirm (or infirm) numerically their orders of strong (and weak) convergence — comment on the results obtained.

Bonus — Sampling via Unadjusted Langevin Algorithm

Given some probability density $P(\mathbf{x})$ on \mathbb{R}^d , an important practical problem is to *sample* from $P(\mathbf{x})$ (*i.e.* draw samples $\mathbf{x}_1, \ldots, \mathbf{x}_N$ distributed according to $P(x)$). For instance, if one wants to approximate the quantity $\mathbb{E}_{X \sim P(\mathbf{x})}[f(X)]$ for some function $f : \mathbb{R}^d \to \mathbb{R}$ through the use of Monte-Carlo methods, then one is required to know how to sample from $P(\mathbf{x})$.

Let us suppose that there exists $V : \mathbb{R}^d \to \mathbb{R}$ and $\beta > 0$ such that

$$
P(\mathbf{x}) = \left(\int_{\mathbb{R}^d} e^{-\beta V(\mathbf{x})} d\mathbf{x}\right)^{-1} e^{-\beta V(\mathbf{x})}
$$
(5)

Probability densities of this form are ubiquitous in applied mathematics — we cannot stress this enough. It turns out that, in this case, $P(\mathbf{x})$ is the unique *invariant measure*^{[1](#page-1-1)} to the following SDE, the so-called (overdamped) Langevin equation:

$$
dX_t = -\nabla V(X_t)dt + \sqrt{\frac{2}{\beta}}dW_t.
$$
\n(6)

Moreover (under appropriate hypotheses), the solution to Equation [\(6\)](#page-1-2) enjoys the following property that, as $t \to \infty$ (and for any initial datum x_0 , the distribution of X_t « approaches » that of $p(\mathbf{x})$. Therefore, if one can simulate the solution $(X_t)_{t\geq0}$ to Equation [\(6\)](#page-1-2) for a long enough time, one can effectively sample from $P(\mathbf{x})$.

¹If X_0 is distributed along $P(\mathbf{x})$, *i.e.* Law(X_0) ∼ P, then the solution X_t to Equation [\(6\)](#page-1-2) verifies Law(X_t) ∼ P for all $t \ge 0$.

PRACTICAL WORK II 3

This leads, for instance, to the following procedure known as the Unadjusted Langevin Algorithm (ULA), which reads as follows. Fix a step-size $\tau \ll 1$ and an initial datum $x_0 \in \mathbb{R}^d$. For $k = 1, ..., K$ (where $K \gg 1$) using the *Euler-Marumaya method*, compute the approximation X_k of $X_{k\tau}$, where X_t is the true solution to Equation [\(6\)](#page-1-2), that is

$$
\widetilde{X}_k = \widetilde{X}_{k-1} - \tau \nabla V(\widetilde{X}_{k-1}) + \sqrt{\frac{2}{\beta}} \xi_k \quad \text{where } \xi_k \sim N(0, \tau I_d). \tag{7}
$$

Then, according to what precedes, \widetilde{X}_K is an « approximate » sample of $P(\mathbf{x})$

Problem 3. Given some $v_{\text{ext}} : \mathbb{R} \to \mathbb{R}$, let us consider the probability density $P_{\beta,N}$ on \mathbb{R}^n , the so-called (one-dimensional) β -ensemble — this terminology pertains to Random Matrix Theory — defined as

$$
P_{\beta,n}(x_1,\ldots,x_n) \propto \prod_{1 \leq i < j \leq n} |x_i - x_j|^\beta \times \prod_{i=1}^n e^{-\beta v_{\text{ext}}(x_i)}.\tag{8}
$$

The density $P_{\beta,N}$ relates to *statistical physics*, as it models *n* electrons roaming on the line $\mathbb R$ together with the potential landscape V_{ext} , at temperature $\frac{1}{\beta}$ and interacting with each others through the twodimensional logarithmic *Coulomb potential*. It turns out $-$ and this is an extremely beautiful and non-trivial fact — that, when $v_{\text{ext}}(x) = \frac{x^2}{2}$ 2 (*i.e.* v_{ext} is the *harmonic potential*), one can *exactly* sample from (8) . In fact, as proved by DUMITRIU & EDELMAN in [\[1\]](#page-3-0), if H_β is the $n \times n$ random matrix defined as

$$
H_{\beta} \sim \frac{1}{\sqrt{2}} \begin{pmatrix} N(0,2) & \chi_{(n-1)\beta} & & & \\ \chi_{(n-1)\beta} & N(0,2) & \chi_{(n-2)\beta} & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_{2\beta} & N(0,2) & \chi_{\beta} \\ & & & \chi_{\beta} & N(0,2) \end{pmatrix}
$$
 (9)

where χ_{γ} denotes the χ law of parameter $\gamma > 0$, then the eigenvalues $\lambda_1, \ldots, \lambda_n$ of H_β are distributed along $P_{\beta,N}$, that is

$$
(\lambda_1, \dots, \lambda_n) \sim P_{\beta, n}.\tag{10}
$$

Question: Implement the ULA algorithm, and confirm its convergence using $P_{\beta,N}$ from which we know how to sample exactly. ^{[2](#page-2-1)}

²If you're done with this question, come to me, I have plenty of other questions regarding this !

REFERENCES

[1] DUMITRIU, I., AND EDELMAN, A. Matrix models for beta ensembles. Journal of Mathematical Physics 43, 11 (2002), 5830–5847.