
PRACTICAL WORK II

You are allowed to write your code in any langage that suits you
the best, as long as the final code is runnable and debugged. That
being said, as previously, a notebook in Python is available on my per-
sonal webpage at https://www.ceremade.dauphine.fr/~lelotte/.
The notebook already contains most (if not all) of the code needed to
answer all the questions of this practical work is a (very) reasonable
amount of time — your job is simply to « fill the gaps » in the code.
When asked to « comment » or « explain » something, add either a
comment (in the code) or a textual cell (in the notebook). Send your
work at lelotte@ceremade.dauphine.fr.

I — « Primum prima »

The backbone of SDE’s theory is the very existence of the Wiener
process (Wt)t>0, named after Norbert Wiener (1894–1964), as well
as that of the Itō integral, named after Kiyoshi Itō (1915–2008), i.e.
a rigorous definition of the quantityˆ T

0

f(s,Xs)dWs. (1)

Problem 1. Implement a function W(T,N) that (approximatively) sim-
ulates the Wiener process on [0, T ] with step-size h = T/N , where
N ∈ N, and plot several paths — e.g. with T = 2 and N = 400.
Then, implement a function I(f, T, N, Ws) which approximates the
Itō integral (1) on [0, T ], where f is the integrand and Ws is a path of
the Wiener process.

II — Schemes and orders of convergence

When resorting to a numerical scheme to solve a SDE of the form

dXt = a(t,Xt)dt+ b(t,Xt)dWt, X0 = x0, (2)

we have seen that, similarly to the deterministic case, one can define
the order of strong (resp. weak) convergence γs > 0 (resp. γw > 0) of
the considered scheme (see [Definition 4.19 & 4.20] of the lecture
notes). The [Theorem 4.22] states that γs = 1

2
and γw = 1 (resp.

γs = γw = 1) for the Euler-Marumaya scheme (resp. the Milstein
scheme).
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Problem 2. In this problem, let us consider an important growth model
with added noise, namely the Gompertzian Stochastic Model,

dXt = −βXt ln(Xt)dt+ γXtdWt with β, γ ∈ R, (3)

which corresponds in (2) to the choices a(t, x) = −βx ln(x) and b(t, x) =
γx. In turns out that the solution (Xt)t>0 of (3) has an explicit for-
mula, namely [Bonus — Prove this formula using the Itō formula
by considering Yt = ebt ln(Xt)].

Xt = exp

{
ln(x0)e

−bt − c2

2b
(1− e−bt) + ce−bt

ˆ t

0

ebsdWs

}
. (4)

Implement the Euler-Maruyama scheme (resp. the Milstein scheme)
on [0, T ] with T = 1 and with a uniformly-spaced discretization grid
(i.e. h = T/N for some N ∈ N), and confirm (or infirm) numeri-
cally their orders of strong (and weak) convergence — comment on the
results obtained.

Bonus — Sampling via Unadjusted Langevin Algorithm

Given some probability density P (x) on Rd, an important practical
problem is to sample from P (x) (i.e. draw samples x1, . . . ,xN dis-
tributed according to P (x)). For instance, if one wants to approximate
the quantity EX∼P (x)[f(X)] for some function f : Rd → R through
the use of Monte-Carlo methods, then one is required to know how to
sample from P (x).

Let us suppose that there exists V : Rd → R and β > 0 such that

P (x) =

(ˆ
Rd

e−βV (x)dx

)−1

e−βV (x) (5)

Probability densities of this form are ubiquitous in applied mathematics
— we cannot stress this enough. It turns out that, in this case, P (x)
is the unique invariant measure1 to the following SDE, the so-called
(overdamped) Langevin equation:

dXt = −∇V (Xt)dt+

√
2

β
dWt. (6)

Moreover (under appropriate hypotheses), the solution to Equation (6)
enjoys the following property that, as t→∞ (and for any initial datum
x0), the distribution of Xt « approaches » that of p(x). Therefore, if
one can simulate the solution (Xt)t>0 to Equation (6) for a long enough
time, one can effectively sample from P (x).

1If X0 is distributed along P (x), i.e. Law(X0) ∼ P , then the solution Xt to
Equation (6) verifies Law(Xt) ∼ P for all t > 0.
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This leads, for instance, to the following procedure known as the
Unadjusted Langevin Algorithm (ULA), which reads as follows. Fix a
step-size τ � 1 and an initial datum x0 ∈ Rd. For k = 1, . . . , K (where
K � 1) using the Euler-Marumaya method, compute the approxima-
tion X̃k of Xkτ , where Xt is the true solution to Equation (6), that
is

X̃k = X̃k−1 − τ∇V (X̃k−1) +

√
2

β
ξk where ξk ∼ N(0, τId). (7)

Then, according to what precedes, X̃K is an « approximate » sample
of P (x)

Problem 3. Given some vext : R → R, let us consider the probability
density Pβ,N on Rn, the so-called (one-dimensional) β-ensemble — this
terminology pertains to Random Matrix Theory — defined as

Pβ,n(x1, . . . , xn) ∝
∏

16i<j6n

|xi − xj|β ×
n∏
i=1

e−βvext(xi). (8)

The density Pβ,N relates to statistical physics, as it models n elec-
trons roaming on the line R together with the potential landscape Vext,
at temperature 1

β
and interacting with each others through the two-

dimensional logarithmic Coulomb potential. It turns out — and this is
an extremely beautiful and non-trivial fact — that, when vext(x) = x2

2
(i.e. vext is the harmonic potential), one can exactly sample from (8).
In fact, as proved by Dumitriu & Edelman in [1], if Hβ is the n×n
random matrix defined as

Hβ ∼
1√
2


N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β

. . . . . . . . .
χ2β N(0, 2) χβ

χβ N(0, 2)

 (9)

where χγ denotes the χ law of parameter γ > 0, then the eigenvalues
λ1, . . . , λn of Hβ are distributed along Pβ,N , that is

(λ1, . . . , λn) ∼ Pβ,n. (10)

Question: Implement the ULA algorithm, and confirm its convergence
using Pβ,N from which we know how to sample exactly. 2

2If you’re done with this question, come to me, I have plenty of other questions
regarding this !
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