
PRACTICAL WORK I

You are allowed to write your code in any langage that suit you
the best, as long as the final code is runnable and debugged. That
being said, a notebook in Python is available on my personal webpage
at https://www.ceremade.dauphine.fr/~lelotte/. The notebook
already contains most (if not all) of the code needed to answer all
the questions of this practical work is a (very) reasonable amount of
time — your job is simply to « fill the gaps » in the code. When
asked to « comment » or « explain » something, add either a comment
(in the code) or a textual cell (in the notebook). Send your work at
lelotte@ceremade.dauphine.fr.

This « exam » — though effectively graded — is the occasion for
you to (concretely) apply some of the (abstract) notions you’ve learned
during the lectures1 . Feel free to roam in your notes or any supplemen-
tary material — and also feel free to ask me any questions regarding
the implementation of your (and of my own) code — I’m here to help
you!2

I — Stiff equations

One shall expect that, as the solution of a simple ODE of the form
y′ = f(t, y) displays much variation in some region, a small step-size
h� 1 is required in this very region when resorting to straightforward
numerical schemes. It turns out that, in some peculiar problems, the
step-size is required to be at an unacceptably small level even though
the solution curve is extremely smooth and nicely-behaved — this is
the essence of stiffness. We shall explore this phenomenon with the
simple equation

y′ = λ(y − g(t)) + g′(t) (1)

1Unless you set yourself to become a professional mathematician, the *insert
here any obscure theorem* will certainly be of no-use in the aftermath of your
degree. That being said, there is a high percentage of chance that, in your future
job, you will be required to code little pieces of programs here and there !

2Also, even though this practical work should be done individually, you are
allowed to « discuss » between each others — which does not mean: copy-pasting
the code of your nearest neighbor like a typing monkey !
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where the general solution of Equation (1) is given by y(t) = g(t)+ceλt,
where g : R → R is any (smooth) function, λ < 0 is some negative
number and c ∈ R depends on the initial condition.

Problem 1. Consider Equation (1) with g(t) = tanh(t+ 2) with initial
condition y(0) = g(0) (i.e. c = 0) and λ = −100. Suppose that the
initial measurement carries a small error ε, that is y0 = g(0) + ε with
ε = 10−3, and integrate the equation on [0, T ] with T = 2.

(a) Use the forward Euler scheme with h = T/N where the number
of steps varies in N ∈ {99, 100, 101}. What do you notice ?

(b) Use the 4th-order Runge-Kutta method given at the Example
2.21 of the lecture notes with N ∈ {70, 71, 72}. Similarly as
before, what do you notice ?

(c) Given any numerical scheme N , we denote by sN : C→ C the
function such that the region of stability of N is defined as

AN = {z ∈ C : |sN (z)| < 1} . (2)

Compute sN for the two preceding numerical schemes, plot the
(boundary of the) regions of stability AN , and explain why the
4th-order Runge-Kutta method is performing « better ».

(d) Finally, implement the backward Euler scheme with much smaller
N ’s — and explain why this scheme largely outperforms the
previous ones.

II — Orders of convergence

Let y : [0, T ] → R be the solution to the generic ODE y′ = f(t, y)
with y(0) = y0. Recall that a numerical scheme is said to be of order
p if the following condition is verified

τ(h) := max
k∈{0,...,T/h}

|yk − y(tk)| = O(hp), as h→ 0, (3)

where tk := kh and yk (for k = 0, . . . , T/h with T/h ∈ N) denotes the
approximation of y(tk) given by the numerical scheme (that is, the k-th
step of the method). The bigger is p, the « better » is the numerical
scheme. Evidently, appealing to Equation (3), if a numerical scheme
has order p, then we shall expect, denoting hq = T/2q for q ∈ N, that

τ(hq)

τ(hq+1)
' 2p =⇒ p ' log2

(
τ(hq)

τ(hq+1)

)
. (4)

Therefore, using Equation (4), one can numericaly « retrieve » the
order of convergence p.
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Problem 2. Let us consider the two following dynamics, namely f1(t, y) =
y (with y(0) = 1; so that evidently the exact solution reads y1(t) = et)
and f2(t, y) = 1 +

√
y with y(0) = 0. The exact solution y2 to the

second ODE is unique and given by

y2(t) =
(
1 +W (−e−1−t/2)

)2
, for all t ∈ R+ (5)

where W is an important special function coined as the Lambert func-
tion, defined as the reciprocal of t 7→ tet (that is, if s = tet, then
t = W (s)).

(a) Integrate y′ = f1(t, y) on [0, T ] with T = 2 using the for-
ward Euler scheme, the Heun method and the 4th-order Runge-
Kutta method with h = T/2q for q ∈ {1, . . . , 10}. Plot q 7→
log2(

τ(hq)

τ(hq+1)
) and determine numerically the order of conver-

gence of each methods.
(b) Now, integrate y′ = f2(t, y) on [0, T ] with T = 2 using the same

methods and parameters as previously — what do you observe?
Come up with an explanation.
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